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of Machine Learning which focuses on problems that require an understanding of data to make
predictions.

viii



Chapter 1

Introduction

”I predict that, because of artificial intelligence and its ability to automate certain tasks

that in the past were impossible to automate, not only will we have a much wealthier civilization, but

the quality of work will go up very significantly and a higher fraction of people will have callings

and careers relative to today.” - Jeff Bezos, Amazon.com LLC (Founder and executive chairman),

Blue Origin LLC (Founder)

Reinforcement Learning (RL) is a concept of sequential decision-making to obtain max-

imum rewards. It is a branch of Machine Learning (ML) that is relatively new and is based on the

concept of continuous learning. It has the ability to learn from mistakes and correct them in the

future. The algorithms have shown that with experience, they can outperform humans in the task

they are trained to do with ease. Such an example was showcased famously by AlphaGo [25], an

RL agent trained in the game of Go that beat the best human player on the planet.

However, this branch of ML has not received attention in industrial use-cases. The reason

for this is designing reward functions that are optimal for a problem is a difficult task. This is the

reason most RL algorithms are built and tested on games, as it is easier to reward a decision in that

scenario.

Using RL for Data Mining (DM) problems is a new idea that has many advantages over

traditional DM methods. The major advantage is self-healing. This stems from the property of RL

that it is a sequential learning algorithm. That means over time, the RL agent would be able to

solve the problems without errors, and if it is exposed to outliers, it learns how to work with such

datapoints too, thereby self-correcting itself.

There is a concept that RL is the future of Artificial Intelligence (AI) for the simple reason

that any problem can be designed to be a sequential decision-making problem. This would make

1



CHAPTER 1. INTRODUCTION

RL a universal concept that can solve any type of problem if posed to the agent in a proper format.

In nature, when it comes to intelligent life, all our actions are based on sequential decisions. We

have two major inputs to factor in, one is the immediate reward for our action, and the second is our

long-term gains from that action which are stored as knowledge in our memory. This is comparable

to the rewards we receive from the environment and the Bellman equation trying to predict the long-

term gains. Since natural intelligence can solve problems other than blatant decision-making, we

propose RL can do the same.

To prove this, we have designed this python library or package known as Data Mining

Gym (DM-Gym) to showcase the ability of RL to solve classical data-mining tasks such as Clus-

tering, Classification, and Regression. The work involves designing the Markov Decision Pro-

cess (MDP) and designing the reward function to provide feedback to the agent at each timestep.

The idea for this package was born when we noticed OR-Gym is unintentionally trying

to solve the same problem. They built the package to bring RL into the spotlight for industrial use-

cases. They also inadvertently showcased that RL can be used for problems other than games and

in actual industrial real-world optimization problems.

Our library relies upon the standard OpenAI gym [6] interface for RL and contains multi-

ple environments for solving Clustering and Classification problems. The MDP is also structured in

a way that they are usable by the optimization community. OpenAI gym has multiple environments,

which can mostly be solved using the model-free RL techniques. Most optimization problems per-

form well with model-based approaches, so the optimization community relies on this more, even

though there is a loss of generality in the models.

Our library can be found along with python notebooks to test these environments on

GitHub and is downloadable from PyPI as well.

• Github: https://github.com/ashwin-M-D/DM-Gym

• PyPI: https://pypi.org/project/dm-gym/
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Chapter 2

Literature Review

In this section, we discuss RL and how it works. We will also see the type of problems it

can solve and how DM problems can be configured so that RL can solve them.

2.1 Reinforcement Learning

RL as we know it today is modeled in the book ”Reinforcement Learning: An introduc-

tion” [26]. They go over the basics of RL and how it has improved over the years. They focus on

the core ideas of RL and how they work.

RL is a novel ML approach that depends on experience and rewards to train itself in an

environment. The agent’s objective is to maximize the reward it gains throughout an episode. The

agent uses a Monte-Carlo or a Dynamic Programming based approach to solve the environments.

Figure 2.1: Basic Architecture for an RL Training Setup
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CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Basic Algorithm for Training an RL Agent in an Environment

The backbone for the concept of RL is known as the MDP. This is where the problem is

poised as a sequence of decision-making situations, and based on agent’s decision in that scenario,

feedback in the form of a reward is provided to the agent. The agent, however, should not look at

short-term reward maximization but should be able to maximize reward over the entire simulation.

This could mean it takes a lower reward action in one situation to get a very large reward later. This

is known as the Markov Chain [12].

Gt = Rt + γGt+1 (2.1)

The Bellman equation (Equation 2.1) [3] is the mathematical manifestation of the Markov

chain. It considers not only the current reward but also all possible future rewards. The Bellman

equation is used to obtain policy values with experience for RL. These policy values for each state

can be approximated into a function, and currently, the best function approximator is a concept

known as neural networks. This is the basis of Deep Q Networks (DQN) based RL.

4



CHAPTER 2. LITERATURE REVIEW

Figure 2.3: A Representation of the Markov Decision Process

Below is the derivation of the Bellman Equation from the theoretical concept of the

Markov Chain.

Proof. let Gt and Rt be value of state S and reward at timestep t respectively

Gt = Rt + γRt+1 + γ2Rt+2 + γ3Rt+3 + ...

= Rt + γ(Rt+1 + γRt+2 + γ2Rt+3 + ...)

= Rt + γGt+1

2.1.1 Q Learning

Q-Learning is RL in its most basic form. Q-learning is an off-policy reinforcement learn-

ing algorithm that seeks to find the best action to take in the current state. It’s considered off-policy

because the q-learning function learns from actions outside the current policy, like taking random

actions, and therefore a policy is not needed. More specifically, q-learning seeks to learn a policy

that maximizes the total reward [30].

This algorithm does not use any neural network to approximate functions. It stores values

in a table to refer to later. It does not build the Q function but refers to the table to get the values.

The table is updated at each step using the Bellman Equation.

The Q-Learning algorithm is shown below (Algorithm 2.1.1).

2.1.2 Deep Reinforcement Learning

In Q learning, since the Q function is not generated but rather referred to from a table, the

q values for unknown states are impossible to calculate. This means, that in scenarios where there is

a continuous state space, Q-Learning cannot be used. It also becomes impractical if the state space

is too large. The larger the state space, the larger the q table would be. This would consume a lot of

memory.

5



CHAPTER 2. LITERATURE REVIEW

Algorithm 2.1.1 : Q-learning (off-policy TD control) for estimating Policy Values.
Require:

step size α ∈ (0, 1],

ε > 0

Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that Q(terminal, ·) = 0

for episode do

Initialize S

for step of episode do

Choose A from S using policy derived from Q (e.g., ε-greedy)

Take action A, observe R, S′

Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S′, a)−Q(S,A)]

S ← S′

end for

end for

The best way to combat this is to use a function approximator. As mentioned earlier, the

best function approximator known are neural networks, and so using this, values for unknown states

can be obtained as well.

Once the agent can work on unknown states, the algorithms can focus on other problem

aspects in RL, such as accuracy, efficiency, and stability. For these reasons, many different RL

algorithms were born. A few of them are discussed here.

2.1.2.1 Deep Q Learning

Deep Q Learning is based on the original Q learning algorithm. The only difference is

that instead of a q table, there is a neural network, which takes the state as input and returns the

policies for each action in that state (π). This network is known as DQN [21]. The algorithm is

shown below (Algorithm 2.1.2).

2.1.2.2 Double Deep Q Learning

DQN solves the issue of handling a large and continuous state space. However, the algo-

rithm is not stable and tends to face a problem known as catastrophic forgetting [17]. It also fails

6
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Algorithm 2.1.2 : Deep Q-learning: Learn function Q : X ×A → R
Require:

States X = {1, . . . , nx}
Actions A = {1, . . . , na}, A : X ⇒ A
Reward function R : X ×A → R

Black-box (probabilistic) transition function T : X ×A → X
Discounting factor γ ∈ [0, 1]

procedure DEEP Q LEARNING(X , A, R, T , γ)

while Q is not converged do

Start in state s ∈ X
while s is not terminal do

Get π from DQN and exploration strategy

(e.g. π(x)← arg maxaQ(x, a) or ε greedy)

a← π(s)

r ← R(s, a) . Receive the reward

s′ ← T (s, a) . Receive the new state

Q′(s, a)← r + γ ·maxa′ Q(s′, a′)

Train DQN with (Q′(s, a), Q(s, a))

s← s′

end while

end while

return Q

end procedure

to train due to not being able to minimize error. The reason this happens is that Q′ and Q are both

calculated using the same network. This results in a problem similar to a dog trying to catch its tail.

To overcome this, Double Deep Q Networks (DDQN) uses two networks that work syn-

chronously. One network is used to calculate Q′ and the other to calculate Q. The main network,

which is being trained, is periodically copied into the other network (Algorithm 2.1.3) [27].

Other than DDQN, there is another way two networks can be trained so that the training

is stable and reaches completion. This method, in its raw form, takes longer to train than DDQN

but, once combined with advanced RL methods, performs better. This is known as Dueling DQN

(Algorithm 2.1.4) [29].

7
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Algorithm 2.1.3 : Double Deep Q-learning: Learn function Q : X ×A → R
Require:

States X = {1, . . . , nx}
Actions A = {1, . . . , na}, A : X ⇒ A
Reward function R : X ×A → R

Black-box (probabilistic) transition function T : X ×A → X
Discounting factor γ ∈ [0, 1]

procedure DOUBLE DEEP Q LEARNING(X , A, R, T , γ)

while Q1 is not converged do

Start in state s ∈ X
while s is not terminal do

Get π from DQN1 and exploration strategy

(e.g. π(x)← arg maxaQ1(x, a) or ε greedy)

a← π(s)

r ← R(s, a) . Receive the reward

s′ ← T (s, a) . Receive the new state

Q1′(s, a)← r + γ ·maxa′ Q2(s′, a′) . Q2 is calculated using DQN2

Train DQN1 with (Q1′(s, a), Q1(s, a))

s← s′

end while

DQN2← DQN1 . DQN2 is overwritten with the parameters from DQN1

end while

return Q

end procedure

There are multiple implementations, One of which is shown below. In this case, two

networks train simultaneously in the same environment, and we end up with two trained networks.

Both networks predict the action, and whichever action has a higher Q value will be chosen.

This is better than DQN because having two networks train in this manner removes the

possibility of having correlated states coming in for training continuously. Having correlated states

while training leads to unwanted bias building up inside the network.

8
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Algorithm 2.1.4 : Dueling Deep Q-learning Network.
Require:

Initialize QA, QB, s

repeat

Choose a, based on QA(s, ·)andQB(s, ·), observer, s
Choose (e.g. random or better) either UPDATE(A) or UPDATE(B)

if UPDATE(A) then

Define a∗ = argmaxaQ
A(s′, a)

QA(s, a)← QA(s, a) + λ(s, a)(r + γQB(s′, a∗)−QA(s, a))

else if UPDATE(B) then

Define b∗ = argmaxaQ
B(s′, a)

QB(s, a)← QB(s, a) + λ(s, a)(r + γQA(s′, b∗)−QB(s, a))

end if

s← s′

until End

This is, however, not the original Dueling DQN algorithm [29]. The original Dueling

DQN algorithm is based on two networks, one which calculates the state value and the other which

calculates the action advantage or action policies for that state. Then an algorithm similar to DDQN

is run.

2.1.2.3 Actor-Critic Methods

Actor-Critic Methods [16] were developed to combat the problem that DDQN methods

cannot handle a continuous action-space. This is not a single algorithm but rather a family of differ-

ent algorithms. They have a minimum of two networks. An actor-network provides the action for

a given state, and a critic-network provides the state value, action policies, or any other evaluation

based on the action taken by the actor for a given state.

The base algorithm is simple (Algorithm 2.1.5). It is known as Q Actor-Critic. It has two

networks. w is the Q Network, also known as the Critic, and θ is the actor-network.

More complex Actor-Critic algorithms exist, such as Advantage Actor-Critic (A2C) [20],

Asynchronous Advantage Actor-Critic (A3C) [20], and Soft Actor-Critic (SAC) [13]. They can

have more than two neural networks and they might use other techniques such as experience replay

to improve training capabilities and performance.

9
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Algorithm 2.1.5 : Q Actor-Critic
Require:

Networks: θ, w

learning rates: αθ, αw

for episode do

Initialize s

Sample a ∼ πθ(a|s)
for step of episode do

rt ← R(s, a)

s′ ← P (s′|s, a)

a′ ← πθ(a
′|s′)

θ ← θ + αθQw(s, a)∇θlogπθ(a|s) : Update the Policy Parameters

δt = rt + γQw(s′, a′)−Qw(s, a) : TD error calculation at time t

w ← w + αwδt∇wQw(s, a) : Update Q Function

a← a′ and s← s′

end for

end for

2.2 Data Mining

The problems being solved in this paper are classical DM problems. These include clus-

tering, classification, and regression for value prediction. These problems can be solved by multiple

classical approaches. To compare our model’s performance, we use the K-Means clustering algo-

rithm for clustering problems, and logistic regression for classification,. We have not converted

linear regression into an MDP yet.

2.2.1 Clustering

Clustering is an unsupervised ML problem where datapoints are grouped into clusters

based on their proximity to one another. It is a very important problem that can be solved in many

ways. Each solution to the clustering problem has its advantages and disadvantages.

The most famous method for solving clustering problems is K-Means clustering. It is

popular because it is not computationally expensive. However, it is dependent on knowing before-

hand the number of clusters present in our data. It is also dependant on the clusters being centroidal

10
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clusters.

An algorithm that counters the first problem of knowing the number of clusters before-

hand is the Mean-Shift algorithm. This is computationally expensive and is still dependent on data

containing centroidal clusters.

An algorithm that solves all the problems faced by the above algorithms is Density-Based

Spatial Clustering of Applications with Noise (DBSCAN). This algorithm is not dependent on

knowing the number of clusters beforehand and can also identify non-centroidal clusters. However,

this requires a lot more parameters than the other algorithms. It is also computationally expensive.

It does not perform well with clusters of varying density and can also report datapoints as not

belonging to any cluster.

Our clustering MDP models are based on the K-Means algorithm. While comparing the

results of our environment with classical data mining techniques, we have used K-Means and Mean-

Shift algorithms.

2.2.1.1 K-Means Clustering

K-Means clustering is a popular clustering method as mentioned above. In real life, in

many cases, we already know the number of clusters in a dataset, and most data follow a normal

distribution making this algorithm very desirable.

The algorithm works by iteratively updating the centroids of the clusters up until the

centroids no longer move. It is computationally inexpensive as well.

The algorithm, as was originally thought of by James MacQueen [19], starts with

S
(t)
i =

{
xp :

∥∥xp − µ(t)i ∥∥2 ≤ ∥∥xp − µ(t)j ∥∥2 ∀j, 1 ≤ j ≤ k} (2.2)

The initial µs or centroids are some randomly selected points in the subspace of the data.

Si is the set of the closest points to µi.

The centroids are then updated to be the mean of the closest points.

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (2.3)

This update occurs up until the update equation produces no change in the values of µi.

11
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2.2.1.2 Mean Shift Clustering

Mean shift is more expensive than K-Means Clustering (Section 2.2.1.1) but solves the

problem of not knowing the number of clusters beforehand. The algorithm is officially introduced

by Fukunaga and Hostetler [11]. The algorithm starts with selecting a large number of centroids

(N ). Points are selected such that

S
(t)
i =

{
xp :

∥∥xp − µ(t)i ∥∥2 ≤ W
}

(2.4)

Where W is a scalar known as a window. It is user-defined. Once the points within a

certain distance (W ) are chosen, centroids are updated as follows

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (2.5)

If any centroids overlap, duplicate points are deleted.

This update occurs until the update equation produces no change in the values of µi. After

this, we are left with the centroids for all the clusters, and we also know the number of clusters in

the system.

2.2.2 Classification

Classification is a supervised ML problem where datapoints are predicted to belong to a

certain group based on knowledge obtained from provided data and labels.

Our classification MDP models are based on the K-nearest algorithm. While comparing

the results of our environment with classical data mining techniques, we will be using K Nearest

neighbors (KNN) and logistic regression.

2.2.2.1 K-Nearest Neighbors

The algorithm is computationally very cheap. However, the algorithm does require a lot

of memory. The entire dataset needs to be stored on the deployed system’s RAM (Random Access

Memory) because, in the case of KNN, the dataset is essentially the model itself. This makes it

impractical in the case of large training datasets.

The non-parametric method used by KNN was first described by Evelyn Fix and Joseph

Hodges in 1951 [10]. The algorithm was utilized for classification and regression by Thomas Cover

[1].
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The algorithm itself is simple and is as follows.

Key idea: store all training examples 〈xi, f(xi)〉
k-Nearest neighbor:

Given xq,

1. Take vote among its k nearest neighbors (if discrete-valued target function)

2. Take the mean of f values of k nearest neighbors (if real-valued)

f̂(xq) =

∑k
i=1 f(xi)

k
(2.6)

The nearest neighbor can be calculated using any metric. Despite Euclidian Distance

(Equation 2.7) being the most popular, Manhattan Distance (Equation 2.8) and Lm distance (Equa-

tion 2.9) can also be used.

Euclidian distance d =

√√√√ n∑
i=1

(X1i −X2i)2 (2.7)

Manhattan distance d =

n∑
i=1

(|X1i −X2i|) (2.8)

Lm distance d = (
n∑
i=1

(|X1i −X2i|)m)1/m (2.9)

This is an elegant solution and works effectively. However, as stated before, it is memory

intensive and therefore not highly scalable. There are workarounds for this. The model could be

limited by the number of datapoints in it and choosing those datapoints carefully. The downside is

that the model performance is affected as the entire dataset would not be used to calculate the test

datapoint’s value.

2.2.2.2 Logistic Regression

Logistic regression estimates the probability of an event occurring, such as being or not

being in a certain class, based on a given dataset of independent variables. Since the outcome is a

probability, the dependent variable is bounded between 0 and 1.

The odds are calculated using logit (Equation 2.10). It is a linear equation of all variables

in a datapoint. During training, the coefficients (βi) of this logit are varied to give the best possible

odds. The logit is passed through a sigmoid function (Equation 2.11) to keep the dependant variable

bounded between 0 and 1.
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The logistic regression as a general statistical model was originally developed and popu-

larized primarily by Joseph Berkson where he coined ”logit” [4] [23]

z = β0 + (

n∑
i=1

βiX1i) (2.10)

p =
1

1 + e−z
(2.11)

There are multiple models, one for each possible class. The value of p, which is the

highest among all classes, is chosen as the class for the datapoint.

The coefficients can be updated during training by various methods, but the simplest and

most popular method is Gradient Descent [8] [24]. The algorithm is as follows (Algorithm 2.2.1).

Algorithm 2.2.1 : The general gradient descent algorithm
Require:

initial weights β(0), number of iterations T

final weights β(T )

learning rate α

different choices of the learning rate α and the estimation technique for ∇L(β) may lead to

different implementations.

for dot = 0 to T − 1

estimate∇L(w(t))

compute ∆w(t) = −∇L(β(t))

β(t+1) := β(t) + α∆β(t)

end for

return w(T )

This algorithm has been modified and improved upon to produce multiple variations. The

most popular is the Adam optimizer [14].

2.2.3 Prediction

Prediction is one of the most basic DM problems. It is looking at data and extrapolat-

ing it into test data to predict its dependent variable. The most common algorithm used is linear

regression.
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2.2.3.1 Linear Regression

Linear regression is the prediction of a dependent variable using other independent vari-

ables in the test datapoint. It was first introduced in its now recognizable form by Yule and G Udny

[32] in the late 19th century. It has been worked upon since then, and once combined with gradient

descent (Algorithm 2.2.1), it is a very effective predictor.

It works similar to the logit in Logistic Regression (Section 2.2.2.2). The equation and

algorithm are the same. However, the logit is not passed through the sigmoid function since the

dependent variable here is not bounded.

The equation is the same (Equation 2.12) and is passed through the gradient descent algo-

rithm (Algorithm 2.2.1) to improve the coefficients (βi). It can also be solved using other optimizer

algorithms.

z = β0 + (
n∑
i=1

βiX1i) (2.12)

2.2.4 Neural Networks

Neural networks [28] can be modified to solve any of the mentioned problems. At the

base, they are essentially the same as linear regression but applied multiple times in a series of

layers. The output can be a single value or multiple values. The values can be modified using

different functions such as sigmoid or softmax to work on classification.

It is difficult to modify neural nets to solve clustering problems as neural nets are inher-

ently supervised machine learning algorithms. However, people have worked on this and developed

algorithms such as Self Organising Maps (SOM) [15]. It is widely different from the normal under-

standing of neural networks as it does not have a fixed number of neurons. It has a set of neurons

connected to form a topological grid (usually rectangular). When some pattern is presented to a

SOM, the neuron with the closest weight vector is considered a winner, and its weights are adapted

to the pattern, as well as the weights of its neighborhood. In this way, a SOM naturally finds data

clusters.

During the training of a neural network, we use the same algorithm as we use in the case

of logistic regression or linear regression. Gradient Descent (Algorithm 2.2.1) is still popular, but

its variations are much more popular as its higher computational resource requirements would be

justified. Adam [14] is the most popular optimizer for neural networks.
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2.2.5 Using Reinforcement Learning for Data Mining Problems

RL is a new and evolving field. It has shown promise to be the first step towards general

artificial intelligence. To do so, it must be able to solve DM problems too. There have been attempts

to do this.

Aristidis Likas tried to solve this in his paper ”A Reinforcement Learning Approach to

Online Clustering” [18]. He tried to solve clustering with the assumption that data would appear in

a stream and the agent would have to cluster it in each timestep. The paper ”Reinforcement learning

algorithms for solving classification problems” [31] tries to solve classification using RL. Many

others have worked on solving these problems too [22] [7] [5].

All RL researchers require a simulation environment to test their work. This project aims

to provide the researchers with just that. This project provides different DM problems formulated

and built as RL environments.
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DM-Gym: The Python Package

The DM-Gym package/library is written in python and can be used without modifications

with python. It has been tested with a python version greater than 3.6. It is incompatible with python

2. It requires the following packages:

• gym >=0.15.0

• numpy >=1.16.1

• scipy >=1.0

• matplotlib >=3.1

• networkx >=2.3

• scikit-learn >=1.0

To use the package, you need to install it on your system. you can install it onto your

system using pip.

pip install dm-gym

You can also download the package from GitHub directly and use it by placing the

dm gym folder inside your project folder.

The library is gym complete. This means that it follows the standard OpenAI gym struc-

ture and functions. The library is also Ray complete. This means that is compatible with Ray and
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all its libraries for building an agent and tuning its hyperparameters, such as Ray RLlib and Ray

Tune.

The library includes multiple versions of Clustering and Classification environments.

Once the MDP for regression environments are developed, they will be added to the library as

well. The environments can handle any dataset and other parameters which may be required can be

passed into the environment through a config dictionary.

All the environments have been showcased using the Ray package in multiple python

notebooks to demonstrate the environments’ success in replicating results from classical ML tech-

niques.

3.1 Structure of the package

This section is to help the users of this package with using it effortlessly. We have multiple

prebuilt functions to help with that.

3.1.1 OpenAI Gym

As mentioned above, the package is gym complete. After importing or gym into the

python environment, one can create different environments. This can be done using the create env()

function.

import dm_gym

from dm_gym.create_env import create_env

env_name = "<env_name>"

env_config = {...<"envconfig">...}

env = create_env(env_name, env_config=env_config)

## This creates an initiated environment.

## It is important to note that you need to specify

## env_config=env_config i.e **kwargs and not *args.

One can use the gym.make() function but will need to import gym first and need to make

sure to specify dm gym as the source of the environment inside gym.make().
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The environment has the basic structure of any other gym based environment. It has 3

functions: reset(), step() and render(). Depending on the environment, the render function defers.

However, the reset function resets the environment and returns the first observation. The step func-

tion takes the action from the previous state and returns the next observation, reward, done state,

and info dict in that order.

3.1.2 Ray RLlib and Ray Tune Compatibility

The environments are ray compatible but the environments cannot be created outside ray.

For this purpose, another function is used to create the environment: ray create env(). This returns

the class itself and not an instance of it. This is can be used inside the register env() function

required for ray tune.

import ray

from ray.rllib import agents

from ray import tune

from dm_gym.create_env import ray_create_env

def register_env(env_name, env_config={}):

env = ray_create_env(env_name)

tune.register_env(env_name,

lambda env_name: env(env_name,

env_config=env_config))

env_name = "<env_name>"

env_config = {<"env config">}

register_env(env_name, env_config)

This registers the environment with ray tune. For more details look into the ray project’s

documentation.
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3.2 Environments

The project contains multiple environments to solve both classification and clustering

problems. Prediction problems that are generally solved by linear regression have not been con-

verted into an MDP yet.

3.2.1 Clustering

There are four different clustering environments in the package. The only difference

between them is the reward function. The environment configs for the environments are as below.

env_name = "clustering-v0"

env_config = { 'data': data,

'k': k

}

env_name = "clustering-v1"

env_config = { 'data': data,

'k': k

}

env_name = "clustering-v2"

env_config = { 'data': data,

'k': k,

'max_steps': max_steps,

'lr': learning_rate

}

env_name = "clustering-v3"

env_config = { 'data': data,

'k': k

}

’data’ is the dataset in the form of a pandas dataframe. ’k’ refers to the number of clusters.
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3.2.2 Classification

There is one classification environment in the package. The environment configuration

for the environment is as below.

env_name = "classification-v0"

env_config = { 'data': data,

'target': target,

'num_classes': k

}

’data’ is the dataset in the form of a pandas dataframe. Target refers to the target class of

the data. It is expected to be a numpy array. ’k’ refers to the number of possible classes.

3.3 Datasets

DM-Gym has the ability to generate random data to test your environments. The function

in DM-Gym is called data gen().

from dm_gym.utils.data_gen import *

### For Clustering type dataset

datagen = data_gen_clustering()

### For Classification type dataset

datagen = data_gen_clustering()

datagen.param_init(n=<num_features>, k=<num_clusters>,

num_records=<num_records>, parameter_means=[], parameter_sd=[])

### For Clustering type dataset

data = datagen.gen_data()

### For Classification type dataset

data, target = datagen.gen_data()
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An example of how the required parameters are assigned is as follows. The parameters n,

k, and num records are required. The others are generated randomly if not specified

### Example of parameters

n = 5 ## Five features

k = 3 ## Three classes

parameter_means = [

[ftr-1-means],

[ftr-2-means],

[ftr-3-means],

[ftr-4-means],

[ftr-5-means]

] ## is n x k matrix

parameter_means = [[1,5,9], [1,6,4], [1,7,3], [2,2,2], [7,8,9]]

## So the centroids would equate to

## (1,1,1,2,7) (5,6,7,2,8) (9,4,3,2,9)

parameter_sd = [

[ftr-1-std],

[ftr-2-std],

[ftr-3-std],

[ftr-4-std],

[ftr-5-std]

] ## is n x k matrix

parameter_sd = [[1,1,1], [1,1,1], [1,1,1], [1,1,1], [1,1,1]]

## This is the default value for parameter_sd given n=5 and k=3)

The package also has inbuilt test models. This means that one can test the dataset with

traditional algorithms and then compare the results with the RL algorithm. These functions are

imported from sklearn and so are very fast. The package does not require any modeling or building

from the user’s side.
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For clustering, we have k-means clustering and mean shift algorithms built in. These are

included inside dm gym.data gen and are imported with it.

from dm_gym.utils.data_gen import *

datagen = data_gen_clustering()

datagen.param_init(n=<num_features>,

k=<num_clusters>,

num_records=<num_records>,

parameter_means=[],

parameter_sd=[])

data = datagen.gen_data()

## Mean Shift Algorithm (Scikit-learn)

final_data, centroids = datagen.gen_model(data=data)

## K-Means Clustering Algorithm (Scikit-learn)

final_data, centroids = datagen.gen_model_Kmeans(data=data,k=k)

## data can be from anywhere and does not need to be generated.

### if you generated the data using datagen, then you need

### not specify k. Otherwise, the value of k is required.

### If k is not specified, it defaults to 2.

The Outputs are as follows:

• final data: is a dataset that contains the original data along with an additional column called

”Class” which contains a label stating which cluster it belongs to.

• centroids: is a 2d python list that contains tuples of the centroids of the clusters. The order is

the same as the label itself.
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For classification, we have logistic regression built in.

from dm_gym.utils.data_gen import *

datagen = data_gen_classification()

datagen.param_init(n=<num_features>, k=<num_clusters>,

num_records=<num_records>, parameter_means=[],

parameter_sd=[])

data = datagen.gen_data()

## Logistic regression (Scikit-learn)

final_data, training_accuracy, classifier = \\

datagen.gen_model(data=data, target=target)

## data can be from anywhere and does not need to be generated.

### if you generated the data using datagen, then you need

### not specify k. Otherwise, the value of k is required.

### If k is not specified, it defaults to 2.

Detailed documentation on the package can be found on GitHub at https://github.com/ashwin-M-

D/DM-Gym.
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Chapter 4

Problems and Results

The DM problems converted into MDPs here are Clustering (Section 4.1) and Classifi-

cation (Section 4.2). We demonstrate the use of these environments using Ray RLlib. We also

compare the results with traditional data mining techniques which are generally employed to solve

these problems.

Though the models perform better if the parameters are fine tuned for each envrionment,

we kept the parameters nearly identical for all environments to be able to compare the results of the

environments. Each environment was run on a DDQN model built in Ray RLlib. All models were

trained for 500 iterations. Datasets were generated for each model using the data gen() function. We

used the default parameters. For clustering environments, we generated one hundred fifty datapoints

with two features each. For the classification environment, we generated one thousand datapoints

with five features each. All environments had three clusters or classes. We also ran the models on

the IRIS dataset [9] [2] to provide a better comparison of our agent’s performance.

4.1 Clustering

There are four different clustering environments in the package. They are labeled as

clustering-v0 (Section 4.1.1), clustering-v1 (Section 4.1.2), clustering-v2 (Section 4.1.3), and

clustering-v3 (Section 4.1.4). They differ by the parameters they take and the reward function they

utilize. The order in which the points are provided by the environment is random after each reset.

However, no datapoints are repeated in a single iteration.
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(a) Plain Data (b) Mean Shift Clustering

(c) K Means Clustering (d) RL Model

Figure 4.1: Clustering V0 Comparison

4.1.1 Clustering-V0

Clustering-V0 takes the data and number of clusters (k) as its parameters. It works by

taking in the datapoint as input and providing the q-values for each cluster as output. The reward

function is designed as follows:

Reward =

−1000 num clusters ≤ k

−log10(dbindex(allPreviousObservations)) num clusters = k
(4.1)

From the training graphs (Figure 4.2) one can see that the learning seems to be unstable.

This however is expected as the reward function has high variation in its values. Looking at the

comparison plots (Figure 4.1) we see that the agent is able to cluster the data but certain clusters

are overpowering the entire data. To fix this, we need to add a regularization term into our reward

function. This has been implemented in clustering-v1 (Section 4.1.2).
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(a) Rewards (b) TD Error

Figure 4.2: Clustering V0 Training Plots

4.1.2 Clustering-V1

This works very similar to clustering-V0 however, the reward function is different. It

provides a reward at the end of each iteration. We rely on the Markov Chain to propagate the

rewards to earlier decisions.

Reward =


0 done 6= True

−2 ∗ log10(dbindex(allPreviousObservations))

+regularization term done = True

(4.2)

The regularization term is a minute quantity that tries to make sure that no one cluster

fully takes over the entire dataset if the clusters are close by.

Looking at the training plots (Figure 4.4) one can infer that this algorithm is a bit more

stable than clustering-v0. The problem of forgetting at the end of training can be corrected by fine-

tuning the parameters based on the type of data being handled. The error plot is also converging

towards zero without a high deviation.

The comparison plots (Figure 4.3) show the performance increase just by adding a regu-

larization term. The clusters are more distinct and are correctly recognized. The regularization term

can be modified to obtain better results.
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(a) Plain Data (b) Mean Shift Clustering

(c) K Means Clustering (d) RL Model

Figure 4.3: Clustering V1 Comparison

(a) Rewards (b) TD Error

Figure 4.4: Clustering V1 Training Plots

28



CHAPTER 4. PROBLEMS AND RESULTS

4.1.3 Clustering-V2

This environment works a bit differently compared to the other environments. It takes in

more parameters than clustering v0 and v1. In addition to data and k, it also takes in a parameter

known as max steps and learning rate (lr).

The environment keeps track of the centroids of the clusters and updates them on each

step. The learning rate parameter is required to state how quickly these centroids are to be updated.

The max steps parameter is an optional parameter that tells the environment to provide

just those many points in each iteration before done is set to true. It is a value that should not be

greater than the size of the dataset. If it is not specified, the parameter is automatically set to be the

size of the dataset.

Reward =

pi yi = 1

−1 ∗ (1− pi) yi = 0
(4.3)

pi is a value which is calculated based on the distance between centroid(i) and the data-

point. It is bounded between 0 and 1. yi is 1 if centroid(i) is the closest centroid to the datapoint.

Else, the value is set to 0.

The performance of clustering-v2 is not as good as clustering-v1. During training, the

rewards are decreasing and the error is not consistent (Figure 4.6). To train using clustering-v2, one

needs to run the model with a low learning rate for a large number of iterations. However, looking

at the comparison plots (Figure 4.5), we see that the clusters are identified with a lot of noise.

Running this model on the iris dataset, we get results comparable to the mean shift al-

gorithm (Figure 4.7) (Figure 4.9). If two clusters are in very close proximity, the model struggles

to find the independent clusters. Also, we see that with higher dimensional data such as iris, the

environment is stable (Figure 4.8).
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(a) Plain Data (b) Mean Shift Clustering

(c) K Means Clustering (d) RL Model

Figure 4.5: Clustering V2 Comparison

(a) Rewards (b) TD Error

Figure 4.6: Clustering V2 Training Plots
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Figure 4.7: RL Model using Clustering V2 on IRIS Dataset

(a) Rewards (b) TD Error

Figure 4.8: Clustering V2 Training Plots for IRIS Dataset
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(a) Unlabeled Iris Dataset (b) Actual labels - Iris Dataset

(c) Iris Dataset solved by Mean Shift Clustering (d) Iris Dataset solved by K Means Clustering

Figure 4.9: IRIS Dataset
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4.1.4 Clustering-V3

Clustering-v3 is based on k-means clustering and we use it to generate our reward. It takes

the data and k as parameters. From the provided data, we generate a k-means clustering model and

obtain the centroids of the cluster. We check if the selected cluster is the right cluster according to

the k-means model and provide the reward accordingly.

Reward =

1 yi = 1

−1 yi = 0
(4.4)

yi is 1 if the chosen centroid(i) is the closest centroid to the datapoint. Else, the value is

set to 0.

In this case, training is very stable (Figure 4.11). The rewards increase almost linearly

until it reaches convergence. The error plot also converges towards zero. There is a significant

deviation in the error plot. This can be fixed by reducing the learning rate of the model.

The comparison plot (Figure 4.10) shows us that the algorithm has a hard time separating

the close clusters. This can also be fixed by fine-tuning the parameters of the agent and training it

over a larger number of iterations.

When this model is run over the iris dataset, we see really good results. The training

plots are still stable (Figure 4.13). The clusters are very clearly identified as well (Figure 4.12)

(Figure 4.9b).
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(a) Plain Data (b) Mean Shift Clustering

(c) K Means Clustering (d) RL Model

Figure 4.10: Clustering V3 Comparison

(a) Rewards (b) TD Error

Figure 4.11: Clustering V3 Training Plots
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Figure 4.12: RL Model using Clustering V3 on IRIS Dataset

(a) Rewards (b) TD Error

Figure 4.13: Clustering V3 Training Plots for IRIS Dataset
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Accuracy Generated Data Iris Dataset
Logistic Regression RL Model Logistic Regression RL Model

Training Data 1.0 1.0 0.975 0.95
Test Data 1.0 1.0 0.967 1.0

Table 4.1: Results of RL Model Using Classification V0

4.2 Classification

Classification is much simpler than clustering as it contains labeled data. We have a single

environment set up to solve this model: classification-v0.

4.2.1 Classification-V0

This works similarly to clustering-v3. However, we do not need to use a k-means clus-

tering model to obtain the labels. It takes in the data, labels (target), and the number of classes as

input. The reward is provided at each step as follows:

Reward =

1 expected class = predicted class

−1 expected class 6= predicted class
(4.5)

Since the environment works very similar to clustering-v3, we expect similar results. The

data is classified very well (Table 4.1). The training plots (Figure 4.14) (Figure 4.15) show very

stable learning as well. The errors converge to zero and the standard deviation is very low. The

reward function also stabilizes smoothly.
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(a) Rewards (b) TD Error

Figure 4.14: Classification v0 Training Plots

(a) Rewards (b) TD Error

Figure 4.15: Classification v0 Training Plots for IRIS Dataset
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Conclusion

RL is a sequential decision-making algorithm that can solve any problem modeled as a

Markov chain. We decided to showcase this ability using DM problems. Since most problems

already exist as either a DM problem or a sequential decision-making problem, we theorize that RL

can solve any problem posed to it if modeled correctly.

The advantages of having this ability are immense. Any problem can be solved using a

single algorithm. This saves man hours and resources which would have gone into analyzing data

to understand the type of problem being solved and then building that model. It also brings us one

step closer to general AI. The same program may not solve all problems, but the same algorithm

does.

From the results we obtained, we see that RL models perform well when the data is

complex with a large number of dimensions. Else, the rewards tend to decrease with time. This

could be fixed by varying the reward function to be more optimal.

The current clustering environments can only work with centroidal clusters and not am-

biguous clusters. Those can be solved using traditional DM techniques such as DBSCAN. Gener-

ating such an environment requires us to rethink the entire concept of clustering from scratch.

We also plan on building an MDP on prediction. Unlike Clustering and Classification,

Prediction is done using a single algorithm, linear regression. However, the same results can be

obtained by using a simple neural net. This poses a unique problem as all neural nets, while training,

is basically a minimization optimization problem. i.e they try to minimize the error over time. RL

on the other hand is a maximization problem. We try to maximize the rewards obtained over time.

Converting a minimization problem into a maximization problem is simple. However, in this case,

if we use any major RL algorithm, we tend to use a neural net within it. This means that we
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convert the minimization problem into a maximization problem which is inherently converted into

a minimization problem again. This is inefficient and needs to be worked on.

The codes used to run these experiments, along with results and preset parameters, can be

found on GitHub at https://github.com/ashwin-M-D/DM-Gym
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Appendix A

Python Codes: Experiment parameters

A.1 Data Generation Parameters for Clustering Algorithms

from dm_gym.utils.data_gen import data_gen_clustering

n = 2 ###Number of dimentions in the data

k = 3 ###Number of clusters we want in the data

num_records = 150

parameter_means = []

parameter_sd = []

data_gen = data_gen_clustering()

error, error_code, pm, psd = data_gen.param_init(n=n, k=k,

num_records=num_records,

parameter_means=parameter_means,

parameter_sd=parameter_sd)

data = data_gen.gen_data()
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APPENDIX A. PYTHON CODES: EXPERIMENT PARAMETERS

A.2 Data Generation Parameters for Classification Algorithms

from dm_gym.utils.data_gen import data_gen_classification

n = 5 ###Number of dimentions in the data

k = 3 ###Number of classes we want in the data

num_records = 1000

parameter_means = []

parameter_sd = []

data_gen = data_gen_classification()

error, error_code, pm, psd = data_gen.param_init(n=n, k=k,

num_records=num_records,

parameter_means=parameter_means,

parameter_sd=parameter_sd)

data, target = data_gen.gen_data()
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APPENDIX A. PYTHON CODES: EXPERIMENT PARAMETERS

A.3 Ray Config parameters for clustering-v0

env_name = "clustering-v0"

epochs = 500

num_timesteps = 1000

env_config = { 'data': data, 'k': k}

rl_config = dict( log_level = "ERROR",

env=env_name,

num_workers=10,

num_gpus=1,

env_config=env_config,

double_q=True,

model=dict(

vf_share_layers=False,

fcnet_activation='relu',

fcnet_hiddens=[128, 64]),

exploration_config={

"type": "EpsilonGreedy",

"initial_epsilon": 1.0,

"final_epsilon": 0.02,

"epsilon_timesteps": 0.4*num_timesteps*epochs},

evaluation_config={ "explore": False},

gamma = 1,

target_network_update_freq=500,

buffer_size=100,

#adam_epsilon=1e-8,

#grad_clip=40,

train_batch_size=32,

framework='torch',

lr=1e-5

)
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APPENDIX A. PYTHON CODES: EXPERIMENT PARAMETERS

A.4 Ray Config parameters for clustering-v1

env_name = "clustering-v1"

epochs = 500

num_timesteps = 1000

env_config = { 'data': data, 'k': k}

rl_config = dict( log_level = "ERROR",

env=env_name,

num_workers=10,

num_gpus=1,

env_config=env_config,

double_q=True,

model=dict(

vf_share_layers=False,

fcnet_activation='relu',

fcnet_hiddens=[128, 64]),

exploration_config={

"type": "EpsilonGreedy",

"initial_epsilon": 1.0,

"final_epsilon": 0.02,

"epsilon_timesteps": 0.4*num_timesteps*num_records},

evaluation_config={"explore": False},

gamma = 1,

target_network_update_freq=500,

buffer_size=100,

#adam_epsilon=1e-8,

#grad_clip=40,

train_batch_size=32,

framework='torch',

lr=1e-5

)
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APPENDIX A. PYTHON CODES: EXPERIMENT PARAMETERS

A.5 Ray Config parameters for clustering-v2

env_name = "clustering-v2"

epochs = 500

num_timesteps = 1000

max_steps = min(num_timesteps, num_records)

env_config = { 'data': data, 'k': k,

'max_steps': max_steps, 'lr': 0.001 }

rl_config = dict( log_level = "ERROR",

env=env_name,

num_workers=10,

num_gpus=1,

env_config=env_config,

double_q=True,

model=dict(

vf_share_layers=False,

fcnet_activation='relu',

fcnet_hiddens=[128, 64]),

exploration_config={

"type": "EpsilonGreedy",

"initial_epsilon": 1.0,

"final_epsilon": 0.02,

"epsilon_timesteps": 0.4*num_timesteps*epochs},

evaluation_config={ "explore": False },

gamma = 0.4,

target_network_update_freq=500,

buffer_size=100,

#adam_epsilon=1e-8,

#grad_clip=40,

train_batch_size=32,

framework='torch',

lr=5e-5)
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A.6 Ray Config parameters for clustering-v3

env_name = "clustering-v3"

epochs = 500

num_timesteps = 1000

env_config = { 'data': data, 'k': k }

rl_config = dict( log_level = "ERROR",

env=env_name,

num_workers=10,

num_gpus=1,

env_config=env_config,

double_q=True,

model=dict(

vf_share_layers=False,

fcnet_activation='relu',

fcnet_hiddens=[128, 64] ),

exploration_config={

"type": "EpsilonGreedy",

"initial_epsilon": 1.0,

"final_epsilon": 0.02,

"epsilon_timesteps": 0.4*num_timesteps*epochs },

evaluation_config={ "explore": False },

gamma = 0.4,

target_network_update_freq=500,

buffer_size=100,

#adam_epsilon=1e-8,

#grad_clip=40,

train_batch_size=32,

framework='torch',

lr=5e-5

)
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A.7 Ray Config parameters for classification-v0

env_name = "classification-v0"

epochs = 500

num_timesteps = 1000

env_config = { 'data': X_train, 'target': y_train, 'num_classes': k }

rl_config = dict( log_level = "ERROR",

env=env_name,

num_workers=10,

num_gpus=1,

env_config=env_config,

double_q=True,

model=dict(

vf_share_layers=False,

fcnet_activation='relu',

fcnet_hiddens=[128, 64] ),

exploration_config={

"type": "EpsilonGreedy",

"initial_epsilon": 1.0,

"final_epsilon": 0.02,

"epsilon_timesteps": 0.4*num_timesteps*epochs },

evaluation_config={ "explore": False },

gamma = 0.4,

target_network_update_freq=500,

buffer_size=100,

#adam_epsilon=1e-8,

#grad_clip=40,

train_batch_size=32,

framework='torch',

lr=1e-5

)
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Appendix B

License

BSD 3-Clause License

Copyright (c) 2021, Ashwin M Devanga and Mohammad Dehghani All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and

the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-

tions and the following disclaimer in the documentation and/or other materials provided with the

distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse

or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-

ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-

ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-

ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-

ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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